Homogenization in Sobolev Spaces with Nonstandard Growth: Brief Review of Methods and Applications
نویسندگان
چکیده
We review recent results on the homogenization in Sobolev spaces with variable exponents. In particular, we are dealing with the Γ-convergence of variational functionals with rapidly oscillating coefficients, the homogenization of the Dirichlet and Neumann variational problems in strongly perforated domains, as well as double porosity type problems.The growth functions also depend on the small parameter characterizing the scale of the microstructure.The homogenization results are obtained by the method of local energy characteristics. We also consider a parabolic double porosity type problem, which is studied by combining the variational homogenization approach and the two-scale convergence method. Results are illustrated with periodic examples, and the problem of stability in homogenization is discussed.
منابع مشابه
Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملWolff Potential Estimates for Elliptic Equations with Nonstandard Growth and Applications
We study superharmonic functions related to elliptic equations with structural conditions involving a variable growth exponent. We establish pointwise estimates for such functions in terms of a Wolff type potential. We apply these estimates to prove a variable exponent version of the Hedberg–Wolff theorem on the dual of Sobolev spaces with zero boundary values.
متن کاملUniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions
The paper addresses the Dirichlet problem for the doubly nonlinear parabolic equation with nonstandard growth conditions: ut = div (a(x, t, u)|u|�(x, t)|�u|p(x, t)-2 with given variable exponents �(x, t) and p(x, t). We establish conditions on the data which guarantee the comparison principle and uniqueness of bounded weak solutions in suitable function spaces of Orlicz-Sobolev type. DOI: https...
متن کاملHomogenization of Variational Problems under Manifold Constraints
Abstract. Homogenization of integral functionals is studied under the constraint that admissible maps have to take their values into a given smooth manifold. The notion of tangential homogenization is defined by analogy with the tangential quasiconvexity introduced by Dacorogna, Fonseca, Malý & Trivisa [18]. For energies with superlinear or linear growth, a Γ-convergence result is established i...
متن کاملOn a Picone's identity for the $mathcal{A}_{p(x)}$-Laplacian and its applications
We present a Picone's identity for the $mathcal{A}_{p(x)}$-Laplacian, which is an extension of the classic identity for the ordinary Laplace. Also, some applications of our results in Sobolev spaces with variable exponent are suggested.
متن کامل